Источник: bazanpa.ru

Утверждаю Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации Г.Г.ОНИЩЕНКО 18 декабря 2008 года

Дата введения с момента утверждения

НОРМЫ ФИЗИОЛОГИЧЕСКИХ ПОТРЕБНОСТЕЙ В ЭНЕРГИИ И ПИЩЕВЫХ ВЕЩЕСТВАХ ДЛЯ РАЗЛИЧНЫХ ГРУПП НАСЕЛЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ MP 2.3.1.2432-08

Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом РФ Г.Г. Онищенко 18 декабря 2008 г.

Дата введения: с момента утверждения.

Исполнители:

ГУ НИИ питания РАМН;

Научный центр здоровья РАМН;

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека;

Московская медицинская академия им. И.М. Сеченова;

Государственный научный центр РФ - Институт медико-биологических проблем РАН;

Российская медицинская академия последипломного образования Минздравсоцразвития России.

1. Введение

Физиологическая потребность в энергии и пищевых веществах - это необходимая совокупность алиментарных факторов для поддержания динамического равновесия между человеком, как сформировавшимся в процессе эволюции биологическим видом, и окружающей средой, и направленная на обеспечение жизнедеятельности, сохранения и воспроизводства вида и поддержания адаптационного потенциала.

"Нормы физиологических потребностей в энергии и пищевых веществах" - усредненная величина необходимого поступления пищевых и биологически активных веществ, обеспечивающая оптимальную реализацию физиолого-биохимических

процессов, закрепленных в генотипе человека.

"Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения РФ" (далее - "Нормы") являются государственным нормативным документом, определяющим величины физиологически обоснованных современной наукой о питании норм потребления незаменимых (эссенциальных) пищевых веществ и источников энергии, адекватные уровни потребления микронутриентов и биологически активных веществ с установленным физиологическим действием.

Данные "Нормы" являются научной базой при планировании объемов производства основного продовольственного сырья и пищевых продуктов в РФ; при разработке перспективных среднедушевых размеров (норм) потребления основных пищевых продуктов с учетом изменения социально-экономической ситуации и демографического состава населения Российской Федерации для обоснования оптимального развития отечественного агропромышленного комплекса и обеспечения продовольственной безопасности страны; для планирования питания в организованных коллективах и лечебно-профилактических учреждениях; используются при разработке рекомендаций по питанию для различных групп населения и мер социальной защиты; применяются для обоснования составов специализированных и обогащенных пищевых продуктов; служат критерием оценки фактического питания на индивидуальном и популяционном уровнях; используются при разработке программ подготовки специалистов и обучении населения принципам здорового питания и др.

"Нормы" являются величинами, отражающими оптимальные потребности отдельных групп населения в пищевых веществах и энергии.

"Нормы" представляют величины потребности в энергии для лиц в каждой выделяемой (в зависимости от пола, возраста, профессии, условий быта и т.п.) группе, а также рекомендуемые величины потребления пищевых веществ, которые должны обеспечивать потребность соответствующей категории населения.

"Нормы" базируются на основных положениях Концепции оптимального питания:

- энергетическая ценность рациона человека должна соответствовать энерготратам организма;
- величины потребления основных пищевых веществ белков, жиров и углеводов должны находиться в пределах физиологически необходимых соотношений между ними. В рационе предусматриваются физиологически необходимые количества животных белков источников незаменимых аминокислот, физиологические пропорции ненасыщенных и полиненасыщенных жирных кислот, оптимальное количество витаминов;
- содержание макроэлементов и эссенциальных микроэлементов должно соответствовать физиологическим потребностям человека;
- содержание минорных и биологически активных веществ в пище должно соответствовать их адекватным уровням потребления.

Настоящие "Нормы" представляют собой дальнейшее развитие действовавших в РФ "Норм" СССР от 1991 г. Сохраняя преемственность, представленные новые "Нормы" учитывают значительные достижения, накопленные за последние годы, благодаря новейшим фундаментальным и прикладным исследованиям в области науки о

питании и таких новых областей знаний как нутригеномика, нутригенетика, нутриметаболомика и протеомика.

2. Термины и определения

Белки - высокомолекулярные азотсодержащие биополимеры, состоящие из L-аминокислот. Выполняют пластическую, энергетическую, каталитическую, гормональную, регуляторную, защитную, транспортную, энергетическую и другие функции.

Величина основного обмена (ВОО) - минимальное количество энергии, необходимое для осуществления жизненно важных процессов, то есть затраты энергии на выполнение всех физиологических, биохимических процессов, на функционирование органов и систем организма в состоянии температурного комфорта (20 °C), полного физического и психического покоя натощак.

Витаминоподобные вещества - вещества животного и растительного происхождения с доказанной ролью в обмене веществ и энергии, сходные по своему физиологическому действию с витаминами.

Витамины - группа эссенциальных микронутриентов, участвующих в регуляции и ферментативном обеспечении большинства метаболических процессов.

Жиры (липиды) - сложные эфиры глицерина и высших жирных карбоновых кислот являются важнейшими источниками энергии. До 95% всех липидов - простые нейтральные липиды (глицериды).

Макронутриенты - пищевые вещества (белки, жиры и углеводы), необходимые человеку в количествах, измеряемых граммами, обеспечивают пластические, энергетические и иные потребности организма.

Микронутриенты - пищевые вещества (витамины, минеральные вещества и микроэлементы), которые содержатся в пище в очень малых количествах - миллиграммах или микрограммах. Они не являются источниками энергии, но участвуют в усвоении пищи, регуляции функций, осуществлении процессов роста, адаптации и развития организма.

Минорные и биологически активные вещества пищи с установленным физиологическим действием - природные вещества пищи установленной химической структуры, присутствуют в ней в миллиграммах и микрограммах, играют важную и доказанную роль в адаптационных реакциях организма, поддержании здоровья, но не являются эссенциальными пищевыми веществами.

Незаменимые (эссенциальные) - пищевые вещества не образуются в организме человека и обязательно поступают с пищей для обеспечения его жизнедеятельности. Их дефицит в питании приводит к развитию патологических состояний.

Нормы физиологических потребностей в энергии и пищевых веществах - усредненная величина необходимого поступления пищевых и биологически активных веществ, обеспечивающая оптимальную реализацию физиолого-биохимических процессов, закрепленных в генотипе человека.

Пищевые волокна - высокомолекулярные углеводы (целлюлоза, пектины и др., в т.ч. некоторые резистентные к амилазе виды крахмалов), главным образом растительной природы, устойчивы к перевариванию и усвоению в желудочно-кишечном тракте.

Рекомендуемый уровень адекватного потребления - уровень суточного потребления пищевых и биологически активных веществ, установленный на основании расчетных или экспериментально определенных величин, или оценок потребления пищевых и биологически активных веществ группой/группами практически здоровых людей.

Углеводы - полиатомные альдегидо- и кетоспирты, простые (моносахариды и дисахариды) и сложные (олигосахариды, полисахариды) являются основными источниками энергии для человека. Некоторые углеводы, в частности аминосахара, входят в состав гликопротеидов.

Физиологическая потребность в энергии и пищевых веществах - это необходимая совокупность алиментарных факторов для поддержания динамического равновесия между человеком, как сформировавшимся в процессе эволюции биологическим видом, и окружающей средой и направленная на обеспечение жизнедеятельности, сохранения и воспроизводства вида и поддержания адаптационного потенциала.

Фосфолипиды - эфиры спиртов (глицерина, сфингозина), жирных кислот, фосфорной кислоты содержат азотистые основания (холин, этаноламин, остатки аминокислот, углеводные фрагменты), составляют основной класс мембранных липидов.

Энергетический баланс - равновесное состояние между поступающей с пищей энергией и ее затратами на все виды физической активности, на поддержание основного обмена, роста, развития и дополнительными затратами у женщин при беременности и грудном вскармливании.

Энерготраты суточные - сумма суточных энерготрат организма, состоящая из энерготрат основного обмена, затрат энергии на физическую активность, специфическое динамическое действие пищи (пищевой термогенез), холодовой термогенез, рост и формирование тканей у детей и дополнительных затрат энергии у беременных и кормящих грудью женщин.

3. Социально-демографические группы населения РФ

3.1. Половозрастные группы населения

Выделены следующие половозрастные группы: мужчины и женщины 18 - 29 лет, 30 - 39 лет, 40 - 59 лет, а также лица пожилого возраста: мужчины и женщины старше 60 лет.

Возрастная периодизация детского населения, принятая в РФ, разработана с учетом двух факторов: биологического (онтогенетического) и социального критерия, учитывающего особенности обучения и воспитания в нашей стране. При этом социальное деление на возрастные группы в основном не противоречит биологическому. Соответственно выделены:

1. Ранний возраст:

- грудной - от рождения до 12 месяцев

- преддошкольный - от 1 года до 3 лет

2. Дошкольный возраст - от 3 до 7 лет

3. Школьный возраст:

- младший - от 7 до 11 лет - средний - от 11 до 14 лет

4. Подростковый возраст - от 14 до 18 лет

3.2. Группы населения, дифференцированные по уровню

физической активности

Потребность в энергии и пищевых веществах зависит от физической активности, характеризуемой коэффициентом физической активности (КФА), равным отношению энерготрат на выполнение конкретной работы к ВОО.

Все взрослое население в зависимости от величины энерготрат делится на 5 групп для мужчин и 4 группы для женщин, учитывающих производственную физическую активность и иные энерготраты.

І группа (очень низкая физическая активность; мужчины и женщины) - работники преимущественно умственного труда, коэффициент физической активности - 1,4 (государственные служащие административных органов и учреждений, научные работники, преподаватели вузов, колледжей, учителя средних школ, студенты, специалисты-медики, психологи, диспетчера, операторы, в т.ч. техники по обслуживанию ЭВМ и компьютерного обеспечения, программисты, работники финансово-экономической, юридической и административно-хозяйственной служб, работники конструкторских бюро и отделов, рекламно-информационных служб, архитекторы и инженеры по промышленному и гражданскому строительству, налоговые служащие, работники музеев, архивов, библиотекари, специалисты службы страхования, дилеры, брокеры, агенты по продаже и закупкам, служащие по социальному и пенсионному обеспечению, патентоведы, дизайнеры, работники бюро путешествий, справочных служб и других родственных видов деятельности);

II группа (низкая физическая активность; мужчины и женщины) - работники, занятые легким трудом, коэффициент физической активности - 1,6 (водители городского транспорта, рабочие пищевой, текстильной, швейной, радиоэлектронной промышленности, операторы конвейеров, весовщицы, упаковщицы, машинисты железнодорожного транспорта, участковые врачи, хирурги, медсестры, продавцы, работники предприятий общественного питания, парикмахеры, работники жилищно-эксплуатационной службы, реставраторы художественных изделий, гиды, фотографы, техники и операторы радио- и телевещания, таможенные инспектора, работники милиции и патрульной службы и других родственных видов деятельности):

III группа (средняя физическая активность; мужчины и женщины) - работники средней тяжести труда, коэффициент физической активности - 1,9 (слесари, наладчики, станочники, буровики, водители электрокаров, экскаваторов, бульдозеров и другой тяжелой техники, работники тепличных хозяйств, растениеводы, садовники, работники рыбного хозяйства и других родственных видов деятельности);

IV группа (высокая физическая активность; мужчины и женщины) - работники тяжелого физического труда, коэффициент физической активности - 2,2 (строительные рабочие, грузчики, рабочие по обслуживанию железнодорожных путей и ремонту автомобильных дорог, работники лесного, охотничьего и сельского хозяйства, деревообработчики, физкультурники, металлурги доменщики-литейщики и другие родственные виды деятельности);

V группа (очень высокая физическая активность; мужчины) - работники особо тяжелого физического труда, коэффициент физической активности - 2,5 (спортсмены высокой квалификации в тренировочный период, механизаторы и работники сельского хозяйства в посевной и уборочный период, шахтеры и проходчики, горнорабочие, вальщики леса, бетонщики, каменщики, грузчики немеханизированного труда, оленеводы и другие родственные виды деятельности).

4. Нормируемые показатели

4.1. Энергия

Суточные энерготраты определяются энерготратами на конкретные виды деятельности и ВОО.

ВОО зависит от ряда факторов, в первую очередь, от возраста, массы тела и пола.

У женщин: ВОО на 15% ниже, чем у мужчин (таблица 4.1).

Таблица 4.1

СРЕДНИЕ ВЕЛИЧИНЫ ОСНОВНОГО ОБМЕНА ВЗРОСЛОГО НАСЕЛЕНИЯ РОССИИ (ККАЛ/СУТКИ)

М	Мужчины (основной обмен) Же						ы (осно	вной об	бмен)	
масс тела кг		30 - т 39 ле	ет 59 л	старше ет 60 . кг				,	тарше 9 лет 60) лет
50	1450	1370	1280	1180	40	1080	1050	1020	960	
55	1520	1430	1350	1240	45	1150	1120	1080	1030	
60	1590	1500	1410	1300	50	1230	1190	1160	1100	
65	1670	1570	1480	1360	55	1300	1260	1220	1160	
70	1750	1650	1550	1430	60	1380	1340	1300	1230	
75	1830	1720	1620	1500	65	1450	1410	1370	1290	
80	1920	1810	1700	1570	70	1530	1490	1440	1360	
85	2010	1900	1780	1640	75	1600	1550	1510	1430	
90	2110	1990	1870	1720	80	1680	1630	1580	1500	

При беременности и грудном вскармливании потребности в энергии увеличиваются в среднем на 15 и 25% соответственно.

У детей: в период новорожденности 15% потребляемой с пищей энергии тратится на рост. С возрастом отношение ВОО/масса тела постепенно снижается до наступления полового созревания. Максимальной потребности в энергии соответствует быстрый рост в подростковом возрасте (пубертатный период, таблица 4.2).

Таблица 4.2

СРЕДНИЕ ВЕЛИЧИНЫ ОСНОВНОГО ОБМЕНА ДЕТСКОГО НАСЕЛЕНИЯ

Возраст	. '	г вной обмен вссы тела)	Основной с (ккал/сутки)	т обмен
1 мес.	60	250		
До года	55	550		1
От 1 до 3 лет	52	660		

От 3 до 7 лет	48	900	
От 7 до 11 лет	25	650	l .
От 11 до 18 лет	24	> 690	

Расход энергии на адаптацию к холодному климату в районах Крайнего Севера увеличивается в среднем на 15%.

Суточные энерготраты на конкретный вид деятельности - это произведение ВОО на соответствующий КФА.

Физиологические потребности в энергии для взрослых - от 2100 до 4200 ккал/сутки для мужчин и от 1800 до 3050 ккал/сутки для женщин.

Физиологические потребности в энергии для детей - 110 - 115 ккал/кг массы тела для детей до 1 года и от 1200 до 2900 ккал/сутки для детей старше 1 года.

4.2. Незаменимые (эссенциальные) пищевые вещества и источники энергии

4.2.1. Макронутриенты

4.2.1.1. Белок

Потребность в белке - эволюционно сложившаяся доминанта в питании человека, обусловленная необходимостью обеспечивать оптимальный физиологический уровень поступления незаменимых аминокислот. При положительном азотистом балансе в периоды роста и развития организма, а также при интенсивных репаративных процессах потребность в белке на единицу массы тела выше, чем у взрослого здорового человека. Усвояемость белка - показатель, характеризующий долю абсорбированного в организме азота от общего количества, потребленного с пищей. Биологическая ценность - показатель качества белка, характеризующий степень задержки азота и эффективность его утилизации для растущего организма или для поддержания азотистого равновесия у взрослых. Качество белка определяется наличием в нем полного набора незаменимых аминокислот в определенном соотношении как между собой, так и с заменимыми аминокислотами. 1 г белка при окислении в организме дает 4 ккал.

Уточнение потребности в белке для детей старше 1 года сделано на основе результатов новых исследований по фактическому потреблению белка большинством детей обследованной популяции.

Физиологическая потребность в белке для взрослого населения - от 65 до 117 г/сутки для мужчин и от 58 до 87 г/сутки для женщин.

Физиологические потребности в белке детей до 1 года - 2,2 - 2,9 г/кг массы тела, детей старше 1 года от 36 до 87 г/сутки.

4.2.1.1.1. Белок животного происхождения

Источниками полноценного белка, содержащего полный набор незаменимых аминокислот в количестве, достаточном для биосинтеза белка в организме человека, являются продукты животного происхождения (молоко, молочные продукты, яйца,

мясо и мясопродукты, рыба, морепродукты). Белки животного происхождения усваиваются организмом на 93 - 96%.

Для взрослых рекомендуемая в суточном рационе доля белков животного происхождения от общего количества белков - 50%.

Для детей рекомендуемая в суточном рационе доля белков животного происхождения от общего количества белков - 60%.

4.2.1.1.2. Белок растительного происхождения

В белках растительного происхождения (злаковые, овощи, фрукты) имеется дефицит незаменимых аминокислот. В составе бобовых содержатся ингибиторы протеиназ, что снижает усвоение белка из них. Что касается изолятов и концентратов белков из бобовых, то их аминокислотный состав и усвоение близки к таковым у белка животного происхождения. Белок из продуктов растительного происхождения усваивается организмом на 62 - 80%. Белок из высших грибов усваивается на уровне 20 - 40%.

4.2.1.2. Жиры

Жиры (липиды), поступающие с пищей, - являются концентрированным источником энергии (1 г жира при окислении в организме дает 9 ккал). Жиры растительного и животного происхождения имеют различный состав жирных кислот, определяющий их физические свойства и физиолого-биохимические эффекты. Жирные кислоты подразделяются на два основных класса - насыщенные и ненасыщенные.

Физиологическая потребность в жирах - от 70 до 154 г/сутки для мужчин и от 60 до 102 г/сутки для женщин.

Физиологическая потребность в жирах - для детей до года 6 - 6,5 г/кг массы тела, для детей старше года - от 40 до 97 г/сутки.

4.2.1.2.1. Насыщенные жирные кислоты

Насыщенность жира определяется количеством атомов водорода, которое содержит каждая жирная кислота. Жирные кислоты со средней длиной цепи (С8 - С14) способны усваиваться в пищеварительном тракте без участия желчных кислот и панкреатической липазы, не депонируются в печени и подвергаются бета-окислению. Животные жиры могут содержать насыщенные жирные кислоты с длиной цепи до двадцати и более атомов углерода, они имеют твердую консистенцию и высокую температуру плавления. К таким животным жирам относятся бараний, говяжий, свиной и ряд других. Высокое потребление насыщенных жирных кислот является важнейшим фактором риска развития диабета, ожирения, сердечно-сосудистых и других заболеваний.

Потребление насыщенных жирных кислот для взрослых и детей должно составлять не более 10% от калорийности суточного рациона.

4.2.1.2.2. Мононенасыщенные жирные кислоты

К мононенасыщенным жирным кислотам относятся миристолеиновая и пальмитолеиновая кислоты (жиры рыб и морских млекопитающих), олеиновая (оливковое, сафлоровое, кунжутное, рапсовое масла). Мононенасыщенные жирные кислоты помимо их поступления с пищей в организме синтезируются из насыщенных жирных кислот и частично из углеводов.

Физиологическая потребность в мононенасыщенных жирных кислотах для взрослых должно составлять 10% от калорийности суточного рациона.

4.2.1.2.3. Полиненасыщенные жирные кислоты

Жирные кислоты с двумя и более двойными связями между углеродными атомами называются полиненасыщенными (ПНЖК). Особое значение для организма человека имеют такие ПНЖК как линолевая, линоленовая, являющиеся структурными элементами клеточных мембран и обеспечивающие нормальное развитие и адаптацию организма человека к неблагоприятным факторам окружающей среды. ПНЖК являются предшественниками образующихся из них биорегуляторов - эйкозаноидов.

Физиологическая потребность в ПНЖК - для взрослых 6 - 10% от калорийности суточного рациона.

Физиологическая потребность в ПНЖК - для детей 5 - 14% от калорийности суточного рациона.

4.2.1.2.3.1. Омега-6 (омега-6) и Омега-3 (омега-3) ПНЖК

Двумя основными группами ПНЖК являются кислоты семейств омега-6 и омега-3. Жирные кислоты омега-6 содержатся практически во всех растительных маслах и орехах, омега-3 жирные кислоты также содержатся в ряде масел (льняном, из семян крестоцветных, соевом). Основным пищевым источником омега-3 жирных кислот являются жирные сорта рыб и некоторые морепродукты. Из ПНЖК омега-6 особое место занимает линолевая кислота, которая является предшественником наиболее физиологически активной кислоты этого семейства - арахидоновой. Арахидоновая кислота является преобладающим представителем ПНЖК в организме человека.

Физиологическая потребность для взрослых составляют 8-10 г/сутки омега-6 жирных кислот и 0.8-1.6 г/сутки омега-3 жирных кислот, или 5-8% от калорийности суточного рациона для омега-6 и 1-2% от калорийности суточного рациона для омега-3. Оптимальное соотношение в суточном рационе омега-6 к омега-3 жирных кислот должно составлять 5-10:1.

Физиологическая потребность в омега-6 и омега-3 жирных кислотах для детей - 4 - 12% и 1 - 2% от калорийности суточного рациона, соответственно.

4.2.1.2.4. Стерины

В пищевых продуктах животного происхождения основным представителем стеринов является холестерин. Количество холестерина в суточном рационе взрослых и детей не должно превышать 300 мг.

4.2.1.2.5. Фосфолипиды

Фосфолипиды участвуют в регуляции обмена холестерина и способствуют его выведению. В пищевых продуктах растительного происхождения в основном встречаются лецитин, в состав которого входит витаминоподобное вещество холин, а также кефалин. Оптимальное содержание фосфолипидов в рационе взрослого человека 5 - 7 г/сутки.

4.2.1.3. Углеводы

Углеводы пищи представлены преимущественно полисахаридами (крахмал) и в

меньшей степени моно-, ди- и олигосахаридами. 1 г углеводов при окислении в организме дает 4 ккал.

Физиологическая потребность в усвояемых углеводах для взрослого человека составляет 50 - 60% от энергетической суточной потребности (от 257 до 586 г/сутки).

Физиологическая потребность в углеводах - для детей до года 13 г/кг массы тела, для детей старше года от 170 до 420 г/сутки.

4.2.1.3.1. Моно- и олигосахариды

К моносахаридам относятся глюкоза, фруктоза и галактоза. Олигосахариды - углеводы, молекулы которых содержат от 2 до 10 остатков моносахаридов. Основными представителями олигосахаридов в питании человека являются сахароза и лактоза. Потребление добавленного сахара не должно превышать 10% от калорийности суточного рациона.

4.2.1.3.2. Полисахариды

Полисахариды (высокомолекулярные соединения образуются из большого числа мономеров глюкозы и других моносахаров) подразделяются на крахмальные полисахариды (крахмал и гликоген) и неусвояемые полисахариды - пищевые волокна (клетчатка, гемицеллюлоза, пектины).

4.2.1.3.3. Пищевые волокна

В группу пищевых волокон входят полисахариды, в основном растительные, перевариваются в толстом кишечнике в незначительной степени и существенно влияют на процессы переваривания, усвоения, микробиоциноз и эвакуацию пищи.

Физиологическая потребность в пищевых волокнах для взрослого человека составляет 20 г/сутки, для детей - 15 - 20 г/сутки.

4.2.2. Микронутриенты

4.2.2.1. Витамины

4.2.2.1.1. Водорастворимые витамины

4.2.2.1.1.1. Витамин С

Витамин С (формы и метаболиты аскорбиновой кислоты) участвует в окислительновосстановительных реакциях, функционировании иммунной системы, способствует усвоению железа. Дефицит приводит к рыхлости и кровоточивости десен, носовым кровотечениям вследствие повышенной проницаемости и ломкости кровеносных капилляров. Среднее потребление варьирует в разных странах от 70 - 170 мг/сутки, в России - 55 - 70 мг/сутки. Установленный уровень физиологической потребности в разных странах - 45 - 110 мг/сутки. Верхний допустимый уровень потребления - 2000 мг/сутки.

Уточненная физиологическая потребность для взрослых - 90 мг/сутки.

Физиологическая потребность для детей - от 30 до 90 мг/сутки.

4.2.2.1.1.2. Витамин В1 (тиамин)

Тиамин в форме образующегося из него тиаминдифосфата входит в состав важнейших ферментов углеводного и энергетического обмена, обеспечивающих организм энергией и пластическими веществами, а также метаболизма разветвленных аминокислот. Недостаток этого витамина ведет к серьезным нарушениям со стороны нервной, пищеварительной и сердечно-сосудистой систем. Среднее потребление варьирует в разных странах от 1,1 - 23 мг/сутки, в США - до 6,7 мг/сутки, в России - 1,3 - 1,5 мг/сутки. Установленный уровень потребности в разных странах - 0,9 - 2,0 мг/сутки. Верхний допустимый уровень не установлен.

Уточненная физиологическая потребность для взрослых - 1,5 мг/сутки.

Физиологическая потребность для детей - от 0,3 до 1,5 мг/сутки.

4.2.2.1.1.3. Витамин В2 (рибофлавин)

Рибофлавин в форме коферментов участвует в окислительно-восстановительных реакциях, способствует повышению восприимчивости цвета зрительным анализатором и темновой адаптации. Недостаточное потребление витамина В2 сопровождается нарушением состояния кожных покровов, слизистых оболочек, нарушением светового и сумеречного зрения. Среднее потребление в разных странах от 1,5 - 7,0 мг/сутки, в России - 1,0 - 1,3 мг/сутки. Установленный уровень потребности в разных странах - 1,1 - 2,8 мг/сутки. Верхний допустимый уровень не установлен. При потреблении витамина В2 в размере 1,8 мг/сутки и более у подавляющего большинства обследованных лиц концентрация рибофлавина в сыворотке крови находится в пределах физиологической нормы.

Уточненная физиологическая потребность для взрослых - 1,8 мг/сутки.

Физиологическая потребность для детей - 0,4 до 1,8 мг/ сутки.

4.2.2.1.1.4. Витамин В6 (пиридоксин)

Пиридоксин в форме своих коферментов участвует в превращениях аминокислот, метаболизме триптофана, липидов и нуклеиновых кислот, участвует в поддержании иммунного ответа, участвует в процессах торможения и возбуждения в центральной нервной системе, способствует нормальному формированию эритроцитов, поддержанию нормального уровня гомоцистеина в крови. Недостаточное потребление витамина В6 сопровождается снижением аппетита, нарушением состояния кожных покровов, развитием гомоцистеинемии, анемии. Среднее потребление в разных странах 1,6 - 3,6 мг/сутки, в РФ - 2,1 - 2,4 мг/сутки. Недостаточная обеспеченность этим витамином обнаруживается у 50 - 70% населения РФ. Установленный уровень потребности в разных странах - 1,1 - 2,6 мг/сутки. Верхний допустимый уровень потребления - 25 мг/сутки.

Физиологическая потребность для взрослых - 2,0 мг/сутки.

Физиологическая потребность для детей - от 0,4 до 2,0 мг/сутки.

4.2.2.1.1.5. Ниацин

Ниацин в качестве кофермента участвует в окислительно-восстановительных реакциях энергетического метаболизма. Недостаточное потребление витамина сопровождается нарушением нормального состояния кожных покровов, желудочно-кишечного тракта и нервной системы. Среднее потребление в разных странах 12 - 40 мг/сутки, в РФ - 13 - 15 мг/сутки. Ниацин может синтезироваться из триптофана (из 60

мг триптофана образуется 1 мг ниацина). Установленный уровень потребности в разных странах - 11 - 25 мг/сутки. Верхний допустимый уровень потребления ниацина - 60 мг/сутки.

Физиологическая потребность для взрослых - 20 мг/сутки.

Физиологическая потребность для детей - от 5 до 20 мг/ сутки.

4.2.2.1.1.6. Витамин В12

Витамин В12 играет важную роль в метаболизме и превращениях аминокислот. Фолат и витамин В12 являются взаимосвязанными витаминами, участвуют в кроветворении. Недостаток витамина В12 приводит к развитию частичной или вторичной недостаточности фолатов, а также анемии, лейкопении, тромбоцитопении. Среднее потребление в разных странах 4 - 17 мкг/сутки, в РФ - около 3 мкг/сутки. Установленный уровень потребности в разных странах - 1,4 - 3,0 мкг/сутки. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 3 мкг/сутки.

Физиологическая потребность для детей - от 0,3 до 3,0 мкг/ сутки.

4.2.2.1.1.7. Фолаты

Фолаты в качестве кофермента участвуют в метаболизме нуклеиновых и аминокислот. Дефицит фолатов ведет к нарушению синтеза нуклеиновых кислот и белка, следствием чего является торможение роста и деления клеток, особенно в быстро пролифелирующих тканях: костный мозг, эпителий кишечника и др. Недостаточное потребление фолата во время беременности является одной из причин недоношенности, гипотрофии, врожденных уродств и нарушений развития ребенка. Показана выраженная связь между уровнем фолата, гомоцистеина и риском возникновения сердечно-сосудистых заболеваний. Среднее потребление в разных странах 210 - 400 мкг/сутки. Установленный уровень потребности в разных странах - 150 - 400 мкг/сутки. Верхний допустимый уровень потребления - 1000 мкг/сутки.

Уточненная физиологическая потребность для взрослых - 400 мкг/сутки.

Физиологическая потребность для детей - от 50 до 400 мкг/сутки.

4.2.2.1.1.8. Пантотеновая кислота

Пантотеновая кислота участвует в белковом, жировом, углеводном обмене, обмене холестерина, синтезе ряда гормонов, гемоглобина, способствует всасыванию аминокислот и сахаров в кишечнике, поддерживает функцию коры надпочечников. Недостаток пантотеновой кислоты может вести к поражению кожи и слизистых. Среднее потребление в разных странах 4,3 - 6,3 мг/сутки. Установленный уровень потребности в разных странах - 4 - 12 мг/сутки. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 5 мг/сутки (вводится впервые).

Физиологическая потребность для детей - от 1,0 до 5,0 мг/сутки (вводится впервые).

4.2.2.1.1.9. Биотин

Биотин участвует в синтезе жиров, гликогена, метаболизме аминокислот.

Недостаточное потребление этого витамина может вести к нарушению нормального состояния кожных покровов. Среднее потребление в разных странах 20 - 53 мкг/сутки. Установленный уровень потребности в разных странах - 15 - 100 мкг/сутки. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 50 мкг/сутки (вводится впервые).

Физиологическая потребность для детей - от 10 до 50 мкг/сутки (вводится впервые).

4.2.2.1.2. Жирорастворимые витамины

4.2.2.1.2.1. Витамин А

Витамин А играет важную роль в процессах роста и репродукции, дифференцировки эпителиальной и костной ткани, поддержания иммунитета и зрения. Дефицит витамина А ведет к нарушению темновой адаптации ("куриная слепота" или гемералопия), ороговению кожных покровов, снижает устойчивость к инфекциям. Среднее потребление в разных странах 530 - 2000 мкг рет. экв./сутки, в РФ - 500 - 620 мкг рет. экв./сутки. Установленный уровень физиологической потребности в разных странах - 600 - 1500 мкг рет. экв./сутки. Верхний допустимый уровень потребления - 3000 мкг рет. экв./сутки. При потреблении витамина А в размере более 900 мкг рет. экв./сутки у подавляющего большинства обследованных концентрация ретинола находится в пределах физиологической нормы.

Уточненная физиологическая потребность для взрослых - 900 мкг рет. экв./сутки. Физиологическая потребность для детей - от 400 до 1000 мкг рет. экв./сутки.

4.2.2.1.2.2. Бета-каротин

Бета-каротин является провитамином A и обладает антиоксидантными свойствами. 6 мкг бета-каротина эквивалентны 1 мкг витамина A. Среднее потребление в разных странах 1,8 - 5,0 мг/сутки. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 5 мг/сутки (вводится впервые).

4.2.2.1.2.3. Витамин Е

Витамин Е представлен группой токоферолов и токотриенолов, которые обладают антиоксидантными свойствами. Является универсальным стабилизатором клеточных мембран, необходим для функционирования половых желез, сердечной мышцы. При дефиците витамина Е наблюдаются гемолиз эритроцитов, неврологические нарушения. Среднее потребление в разных странах 6,7 - 14,6 мг ток. экв./сутки, в РФ - 17,8 - 24,6 мг ток. экв./сутки. Установленный уровень физиологической потребности в разных странах - 7 - 25 мг ток. экв./сутки. Верхний допустимый уровень потребления - 300 мг ток. экв./сутки.

Уточненная физиологическая потребность для взрослых - 15 мг ток. экв./сутки.

Физиологическая потребность для детей - от 3 до 15 мг ток. экв./сутки.

4.2.2.1.2.4. Витамин D

Основные функции витамина D связаны с поддержанием гомеостаза кальция и фосфора, осуществлением процессов минерализации костной ткани. Недостаток витамина D приводит к нарушению обмена кальция и фосфора в костях, усилению деминерализации костной ткани, что приводит к увеличению риска развития

остеопороза. Среднее потребление в разных странах 2,5 - 11,2 мкг/сутки. Установленный уровень потребности в разных странах - 0 - 11 мкг/сутки. Верхний допустимый уровень потребления - 50 мкг/сутки.

Уточненная физиологическая потребность для взрослых - 10 мкг/сутки, для лиц старше 60 лет - 15 мкг/сутки.

Физиологическая потребность для детей - 10 мкг/сутки.

4.2.2.1.2.5. Витамин К

Метаболическая роль витамина К обусловлена его участием в модификации ряда белков свертывающей системы крови и костной ткани. Недостаток витамина К приводит к увеличению времени свертывания крови, пониженному содержанию протромбина в крови. Среднее потребление в разных странах 50 - 250 мкг/сутки.

Установленный уровень потребности в разных странах - 55 - 120 мкг/сутки. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 120 мкг/сутки (вводится впервые).

Физиологическая потребность для детей - от 30 до 75 мкг/сутки (вводится впервые).

4.2.2.2. Минеральные вещества

4.2.2.2.1. Макроэлементы

4.2.2.2.1.1. Кальций

Необходимый элемент минерального матрикса кости выступает регулятором нервной системы, участвует в мышечном сокращении. Дефицит кальция приводит к деминерализации позвоночника, костей таза и нижних конечностей, повышает риск развития остеопороза. Среднее потребление в разных странах 680 - 950 мг/сутки, в РФ - 500 - 750 мг/сутки. Установленный уровень потребности 500 - 1200 мг/сутки. Верхний допустимый уровень 2500 мг/сутки.

Уточненная физиологическая потребность для взрослых - 1000 мг/сутки, для лиц старше 60 лет - 1200 мг/сутки.

Физиологическая потребность для детей - от 400 до 1200 мг/сутки.

4.2.2.2.1.2. Фосфор

В форме фосфатов принимает участие во многих физиологических процессах, включая энергетический обмен (в виде высокоэнергетического АТФ), регуляции кислотно-щелочного баланса, входит в состав фосфолипидов, нуклеотидов и нуклеиновых кислот, участвует в клеточной регуляции путем фосфорилирования ферментов, необходим для минерализации костей и зубов. Дефицит приводит к анорексии, анемии, рахиту. Оптимальное для всасывания и усвоения кальция соотношение содержания кальция к фосфору в рационе составляет 1:1, а в рационе россиян приближается к 1:2. Среднее потребление в разных странах 1110 - 1570 мг/сутки, в РФ - 1200 мг/сутки. Установленные уровни потребности 550 - 1400 мг/сутки. Верхний допустимый уровень не установлен.

Уточненная физиологическая потребность для взрослых - 800 мг/сутки.

Физиологическая потребность для детей - от 300 до 1200 мг/сутки.

4.2.2.2.1.3. Магний

Является кофактором многих ферментов, в том числе энергетического метаболизма, участвует в синтезе белков, нуклеиновых кислот, обладает стабилизирующим действием для мембран, необходим для поддержания гомеостаза кальция, калия и натрия. Недостаток магния приводит к гипомагниемии, повышению риска развития гипертонии, болезней сердца. Среднее потребление в разных странах от 210 - 350 мг/сутки, в РФ 300 мг/сутки. Установленные уровни потребности 200 - 500 мг/сутки. Верхний допустимый уровень не установлен.

Физиологическая потребность для взрослых - 400 мг/сутки.

Физиологическая потребность для детей - от 55 до 400 мг/сутки.

4.2.2.2.1.4. Калий

Калий является основным внутриклеточным ионом, принимающим участие в регуляции водного, кислотного и электролитного баланса, участвует в процессах проведения нервных импульсов, регуляции давления. Среднее потребление в разных странах от 2650 - 4140 мг/сутки, в РФ - 3100 мг/сутки. Установленные уровни потребности 1000 - 4000 мг/сутки. Верхний допустимый уровень не установлен.

Физиологическая потребность для взрослых - 2500 мг/сутки (вводится впервые).

Физиологическая потребность для детей - от 400 до 2500 мг/сутки (вводится впервые).

4.2.2.2.1.5. Натрий

Основной внеклеточный ион, принимающий участие в переносе воды, глюкозы крови, генерации и передаче электрических нервных сигналов, мышечном сокращении. Клинические проявления гипонатриемии выражаются как общая слабость, апатия, головные боли, гипотония, мышечные подергивания. Среднее потребление 3000 - 5000 мг/сутки. Установленный уровень потребности 1300 - 1600 мг/сутки. Верхний допустимый уровень не установлен.

Физиологическая потребность для взрослых - 1300 мг/сутки (вводится впервые).

Физиологическая потребность для детей - от 200 до 1300 мг/сутки (вводится впервые).

4.2.2.2.1.6. Хлориды

Хлор необходим для образования и секреции соляной кислоты в организме. Среднее потребление 5000 - 7000 мг/сутки. Установленный уровень потребности 2000 - 2500 мг/сутки. Верхний допустимый уровень потребления не установлен.

Физиологическая потребность для взрослых - 2300 мг/сутки (вводится впервые).

Физиологическая потребность детей - от 300 до 2300 мг/сутки (вводится впервые).

4.2.2.2. Микроэлементы

4.2.2.2.1. Железо

Входит в состав различных по своей функции белков, в том числе ферментов. Участвует в транспорте электронов, кислорода, обеспечивает протекание окислительно-восстановительных реакций и активацию перекисного окисления. Недостаточное потребление ведет к гипохромной анемии, миоглобиндефицитной атонии скелетных мышц, повышенной утомляемости, миокардиопатии, атрофическому гастриту. Среднее потребление в разных странах от 10 - 22 мг/сутки, в РФ - 17 мг/сутки. Установленные уровни потребностей для мужчин 8 - 10 мг/сутки и для женщин 15 - 20 мг/сутки. Верхний допустимый уровень не установлен.

Физиологическая потребность для взрослых - 10 мг/сутки (для мужчин) и 18 мг/сутки (для женщин).

Физиологическая потребность детей - от 4 до 18 мг/сутки.

4.2.2.2.2. Цинк

Входит в состав более 300 ферментов, участвует в процессах синтеза и распада углеводов, белков, жиров, нуклеиновых кислот и в регуляции экспрессии ряда генов. Недостаточное потребление приводит к анемии, вторичному иммунодефициту, циррозу печени, половой дисфункции, наличию пороков развития плода. Исследованиями последних лет выявлена способность высоких доз цинка нарушать усвоение меди и тем способствовать развитию анемии. Среднее потребление 7,5 - 17,0 мг/сутки. Установленные уровни потребности 9,5 - 15,0 мг/сутки. Верхний допустимый уровень 25 мг/сутки.

Уточненная физиологическая потребность для взрослых - 12 мг/сутки.

Физиологическая потребность для детей - от 3 до 12 мг/сутки.

4.2.2.2.3. Йод

Участвует в функционировании щитовидной железы, обеспечивая образование гормонов (тироксина и трийодтиронина). Необходим для роста и дифференцировки клеток всех тканей организма человека, митохондриального дыхания, регуляции трансмембранного транспорта натрия и гормонов. Недостаточное поступление приводит к эндемическому зобу с гипотиреозом и замедлению обмена веществ, артериальной гипотензии, отставанию в росте и умственном развитии у детей. Потребление йода с пищей широко варьирует в различных геохимических регионах: 65 - 230 мкг/сутки. Установленные уровни потребности 130 - 200 мкг/сутки. Верхний допустимый уровень 600 мкг/сутки.

Физиологическая потребность для взрослых - 150 мкг/сутки.

Физиологическая потребность для детей - от 60 до 150 мкг/сутки.

4.2.2.2.2.4. Медь

Входит в состав ферментов, обладающих окислительно-восстановительной активностью и участвующих в метаболизме железа, стимулирует усвоение белков и углеводов. Участвует в процессах обеспечения тканей организма человека кислородом. Клинические проявления недостаточного потребления проявляются нарушениями формирования сердечно-сосудистой системы и скелета, развитием дисплазии соединительной ткани. Среднее потребление 0,9 - 2,3 мг/сутки. Установленные уровни потребности 0,9 - 3,0 мг/сутки. Верхний допустимый уровень потребления 5 мг/сутки.

Физиологическая потребность для взрослых - 1,0 мг/сутки (вводится впервые).

Физиологическая потребность для детей - от 0,5 до 1,0 мг/сутки (вводится впервые).

4.2.2.2.5. Марганец

Участвует в образовании костной и соединительной ткани, входит в состав ферментов, включающихся в метаболизм аминокислот, углеводов, катехоламинов; необходим для синтеза холестерина и нуклеотидов. Недостаточное потребление сопровождается замедлением роста, нарушениями в репродуктивной системе, повышенной хрупкостью костной ткани, нарушениями углеводного и липидного обмена. Среднее потребление 1 - 10 мг/сутки. Установленные уровни потребности 2 - 5 мг/сутки. Верхний допустимый уровень потребления 5 мг/сутки.

Физиологическая потребность для взрослых - 2 мг/сутки (вводится впервые).

4.2.2.2.6. Селен

Эссенциальный элемент антиоксидантной системы защиты организма человека, обладает иммуномодулирующим действием, участвует в регуляции действия тиреоидных гормонов. Дефицит приводит к болезни Кашина-Бека (остеоартроз с множественной деформацией суставов, позвоночника и конечностей), болезни Кешана (эндемическая миокардиопатия), наследственной тромбастении. Среднее потребление 28 - 110 мкг/сутки. Установленные уровни потребности 30 - 75 мкг/сутки. Верхний допустимый уровень потребления 300 мкг/сутки.

Физиологическая потребность для взрослых - 55 мкг/сутки (для женщин); 70 мкг/сутки (для мужчин) (вводятся впервые).

Физиологическая потребность для детей - от 10 до 50 мкг/сутки (вводится впервые).

4.2.2.2.2.7. Хром

Участвует в регуляции уровня глюкозы крови, усиливая действие инсулина. Дефицит приводит к снижению толерантности к глюкозе. Среднее потребление 25 - 160 мкг/сутки. Установленные уровни потребности 30 - 100 мкг/сутки. Верхний допустимый уровень не установлен.

Физиологическая потребность для взрослых - 50 мкг/сутки (вводится впервые).

Физиологическая потребность для детей - от 11 до 35 мкг/сутки (вводится впервые).

4.2.2.2.8. Молибден

Является кофактором многих ферментов, обеспечивающих метаболизм серосодержащих аминокислот, пуринов и пиримидинов. Среднее потребление 44 - 500 мкг/сутки. Установленные уровни потребности 45 - 100 мкг/сутки. Верхний допустимый уровень 600 мкг/сутки.

Физиологическая потребность для взрослых - 70 мкг/сутки (вводится впервые).

4.2.2.2.2.9. Фтор

Инициирует минерализацию костей. Недостаточное потребление приводит к кариесу, преждевременному стиранию эмали зубов. Среднее потребление 0,5 - 6,0 мг/сутки. Установленные уровни потребности 1,5 - 4,0 мг/сутки. Верхний допустимый уровень

потребления 10 мг/сутки.

Рекомендуемая физиологическая потребность для взрослых - 4 мг/сутки (вводится впервые).

Физиологическая потребность для детей - от 1,0 до 4,0 мг/сутки (вводится впервые).

4.3. Минорные и биологически активные вещества пищи с установленным физиологическим действием

4.3.1. Витаминоподобные соединения

4.3.1.1. Инозит

Участвует в обмене веществ, вместе с холином участвует в синтезе лецитина, оказывает липотропное действие.

Рекомендуемые уровни потребления: для взрослых - 500 мг/сутки; для детей 4 - 6 лет - 80 - 100 мг/сутки; для детей 7 - 18 лет - от 200 до 500 мг/сутки (вводятся впервые).

4.3.1.2. L-Карнитин

Играет важную роль в энергетическом обмене, осуществляя перенос длинноцепочечных жирных кислот через внутреннюю мембрану митохондрий для последующего их окисления и, тем самым, снижает накопление жира в тканях. Дефицит карнитина способствует нарушению липидного обмена, в том числе развитию ожирения, а также развитию дистрофических процессов в миокарде.

Рекомендуемые уровни потребления: для взрослых - 300 мг/сутки; для детей 4 - 6 лет - 60 - 90 мг/сут.; для детей 7 - 18 лет - от 100 до 300 мг/сутки (вводятся впервые).

4.3.1.3. Коэнзим Q10 (убихинон)

Соединение, участвующее в энергетическом обмене и сократительной деятельности сердечной мышцы.

Рекомендуемый уровень потребления для взрослых - 30 мг/сутки (вводится впервые).

4.3.1.4. Липоевая кислота

Оказывает липотропный эффект, оказывает детоксицирующее действие, участвует в обмене аминокислот и жирных кислот.

Рекомендуемый уровень потребления для взрослых - 30 мг/сутки (вводится впервые).

4.3.1.5. Метилметионинсульфоний (витамин U)

Участвует в метилировании гистамина, что способствует нормализации кислотности желудочного сока и проявлению антиаллергического действия.

Рекомендуемый уровень потребления для взрослых - 200 мг/сутки (вводится впервые).

4.3.1.6. Оротовая кислота (витамин В13)

Участвует в синтезе нуклеиновых кислот, фосфолипидов и билирубина. Рекомендуемый уровень потребления для взрослых - 300 мг/сутки (вводится

впервые).

4.3.1.7. Парааминобензойная кислота

Участвует в метаболизме белков и кроветворении.

Рекомендуемый уровень потребления для взрослых - 100 мг/сутки (вводится впервые).

4.3.1.8. Холин

Входит в состав лецитина, играет роль в синтезе и обмене фосфолипидов в печени, является источником свободных метильных групп, действует как липотропный фактор. В обычном рационе содержится 500 - 900 мг. Верхний допустимый уровень потребления - 1000 - 2000 мг/сутки для детей до 14 лет, 3000 - 3500 мг/сутки для детей старше 14 лет и взрослых.

Рекомендуемые уровни потребления: для взрослых - 500 мг/сутки; для детей 4 - 6 лет от 100 до 200 мг/сутки; 7 - 18 лет от 200 до 500 мг/сутки (вводятся впервые).

4.3.2. Микроэлементы

4.3.2.1. Кобальт

Входит в состав витамина B12. Активирует ферменты обмена жирных кислот и метаболизма фолиевой кислоты. Среднее потребление в РФ 10 мкг/сутки. Верхний допустимый уровень не установлен.

Рекомендуемый уровень потребления для взрослых - 10 мкг/сутки (вводится впервые).

4.3.2.2. Кремний

Кремний входит в качестве структурного компонента в состав гликозоаминогликанов и стимулирует синтез коллагена. Среднее потребление 20 - 50 мг/сутки. Верхний допустимый уровень не установлен.

Рекомендуемый уровень потребления для взрослых - 30 мг/сутки (вводится впервые).

4.3.3. Индольные соединения

4.3.3.1. Индол-3-карбинол

Индолы относятся к продуктам гидролиза глюкозинолатов растений семейства крестоцветных. Биологическая активность пищевых индолов (индол-3-карбинол, аскорбиген, индол-3-ацетонитрил) связана с их способностью индуцировать активность монооксигеназной системы и некоторых ферментов II фазы метаболизма ксенобиотиков (глутатионтрансферазы). Имеются данные эпидемиологических наблюдений о существовании определенной связи между высоким уровнем потребления индол-3-карбинола и снижением частоты риска развития некоторых видов гормонозависимых опухолей.

Рекомендуемый уровень потребления для взрослых - 50 мкг/сутки (вводится впервые).

4.3.4. Флавоноиды

Широко представлены в пищевых продуктах растительного происхождения. Регулярное потребление этих соединений приводит к достоверному снижению риска развития сердечно-сосудистых заболеваний. Высокая биологическая активность флавоноидов обусловлена наличием антиоксидантных свойств. Установлена также важная роль флавоноидов в регуляции активности ферментов метаболизма ксенобиотиков.

Рекомендуемые уровни потребления: для взрослых - 250 мг/сутки (в том числе катехинов - 100 мг); для детей 7 - 18 лет от 150 до 250 мг/сутки (в том числе катехинов от 50 до 100 мг/сутки) (вводятся впервые).

4.3.5. Изофлавоны, изофлавонгликозиды

Содержатся в бобовых. Не являясь стероидными соединениями, они способствуют нормализации холестеринового обмена, оказывают антиоксидантное действие, способствуют нормализации обмена кальция, гормонального баланса.

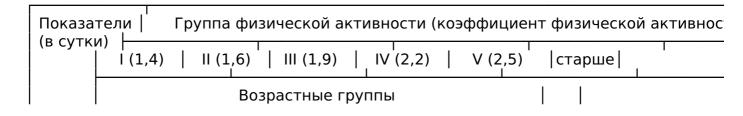
Рекомендуемый уровень потребления для взрослых - 50 мг/сутки (вводится впервые).

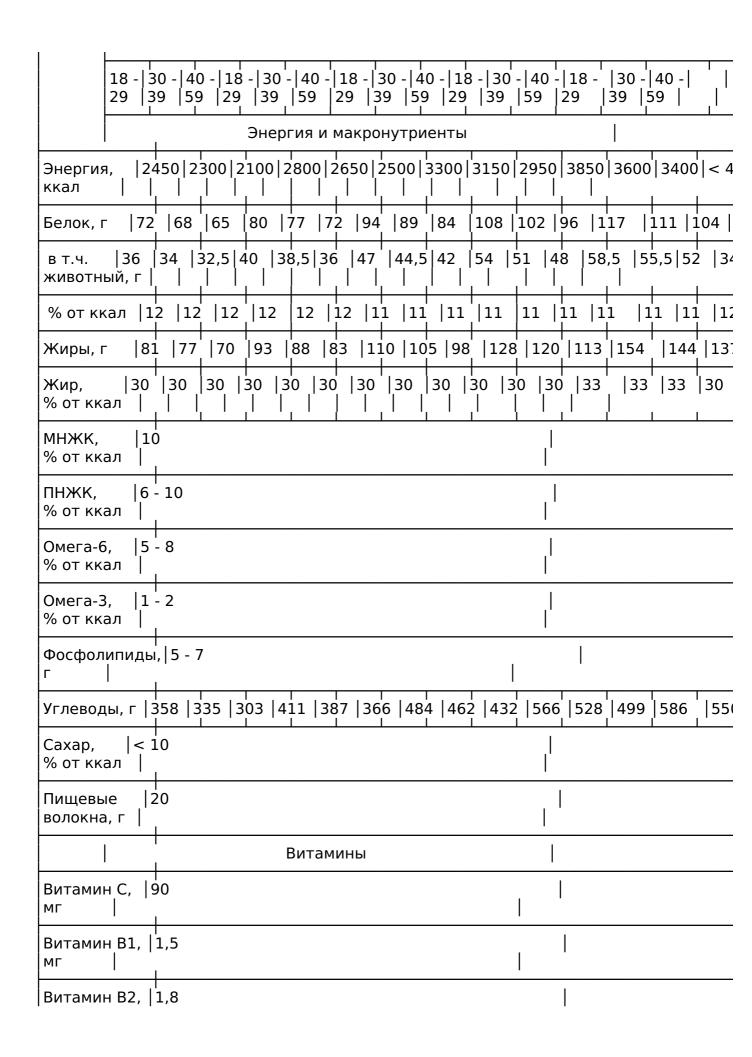
4.3.7. Растительные стерины (фитостерины)

Растительные стерины (фитостерины) содержатся в различных видах растительной пищи человека и в морепродуктах. Они являются обязательным компонентом растительных масел. Существенно снижают уровень свободного холестерина в липопротеидах низкой плотности, способны вытеснять холестерин из мембранных структур. Потребление фитостеринов 150 - 450 мг/сутки.

Рекомендуемый уровень потребления растительных стеринов (фитостеринов) для взрослых - 300 мг/сутки (вводится впервые).

4.3.8.1. Глюкозамин сульфат

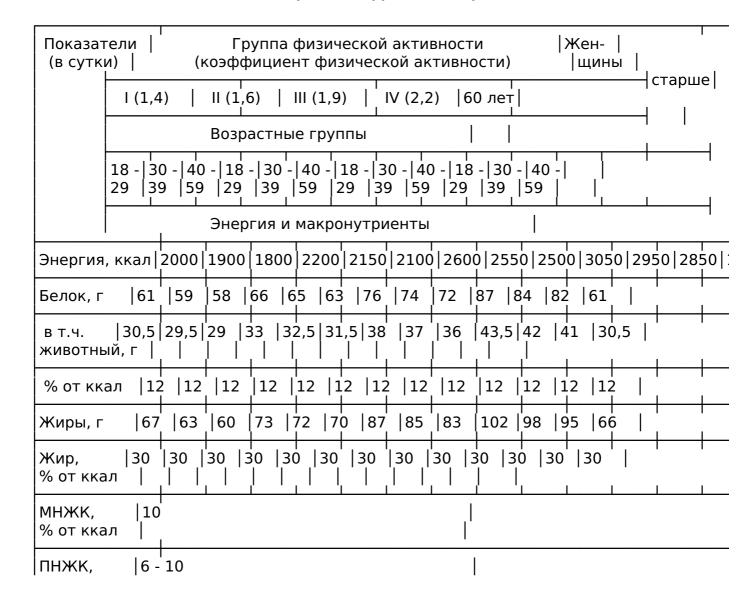

Глюкозамин сульфат - полисахарид хрящевой ткани животных и рыб, входит в состав гликопротеинов. Естественный компонент пищи человека. Участвует в формировании ногтей, связок, кожи, костей, сухожилий, суставных поверхностей, клапанов сердца и др. Положительное действие глюкозаминсульфата на организм человека и функциональную активность опорно-двигательного аппарата доказано в клинических исследованиях.


Рекомендуемый уровень потребления для взрослых - 700 мг/сутки (вводится впервые).

5. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения

Таблица 5.1

НОРМЫ ФИЗИОЛОГИЧЕСКИХ ПОТРЕБНОСТЕЙ В ЭНЕРГИИ И ПИЩЕВЫХ ВЕЩЕСТВАХ ДЛЯ МУЖЧИН


мг	
Витамин B6, 2,0 мг	
Ниацин, мг 20	
Витамин В12, 3,0 мкг	
Фолаты, мкг 400	ĺ
Пантотеновая 5,0 кислота, мг	1
Биотин, мкг 50	
Витамин А, 900 мкг рет. экв.	
Бета- 5,0 каротин, мг	
Витамин Е, 15 мг ток. экв.	
Витамин D, 10 мкг	15
Витамин К, 120 мкг	
	Минеральные вещества
Кальций, мг 1000	1200
Фосфор, мг 800	
Магний, мг 400	
Калий, мг 2500	I
Натрий, мг 1300	
Хлориды, мг 2300	
Железо, мг 10	
Цинк, мг 12	I
Йод, мкг 150	
1	

Медь, мг 1,0)		
Марганец, мг	2,0	1	
Селен, мкг 70	0		
Хром, мкг 50)		
Молибден, 7 мкг	0	I	
Фтор, мг 4,0)		

Примечание. Для лиц, работающих в условиях Крайнего Севера, энерготраты увеличиваются на 15% и пропорционально возрастают потребности в белках, жирах и углеводах.

Таблица 5.2

НОРМЫ ФИЗИОЛОГИЧЕСКИХ ПОТРЕБНОСТЕЙ В ЭНЕРГИИ И ПИЩЕВЫХ ВЕЩЕСТВАХ ДЛЯ ЖЕНЩИН

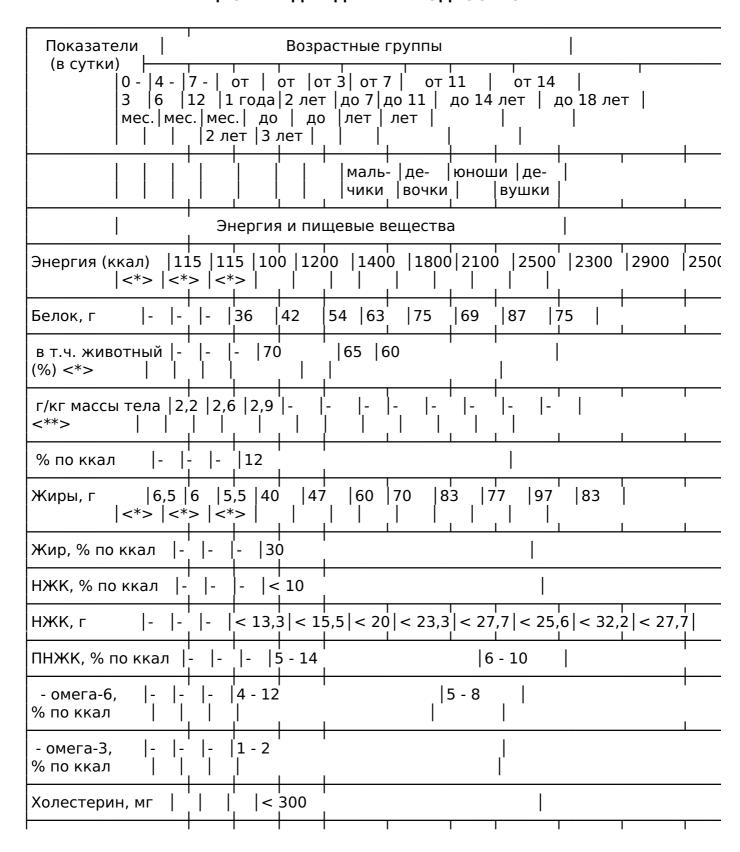
% от ккал	
Омега-6, 5 - 8 % от ккал	
Омега-3, 1-2 % от ккал	
Фосфолипиды, 5 - 7	
Углеводы, г 289 2	74 257 318 311 305 378 372 366 462 432 417 284
Сахар, < 10 % от ккал	
Пищевые 20 волокна, г	
	Витамины
Витамин С, мг 90	
Витамин В1, 1,5 мг	
Витамин В2, 1,8 мг	
Витамин В6, 2,0	
 Ниацин, мг 20 	l l
Витамин В12, 3,0 мкг	
Фолаты, 400 мкг	
Пантотеновая 5,0 кислота, мг	
Биотин, мкг 50	
Витамин А, 900 мкг рет. экв.	
Бета-каротин, 5,0 мг	
Витамин Е, 15	

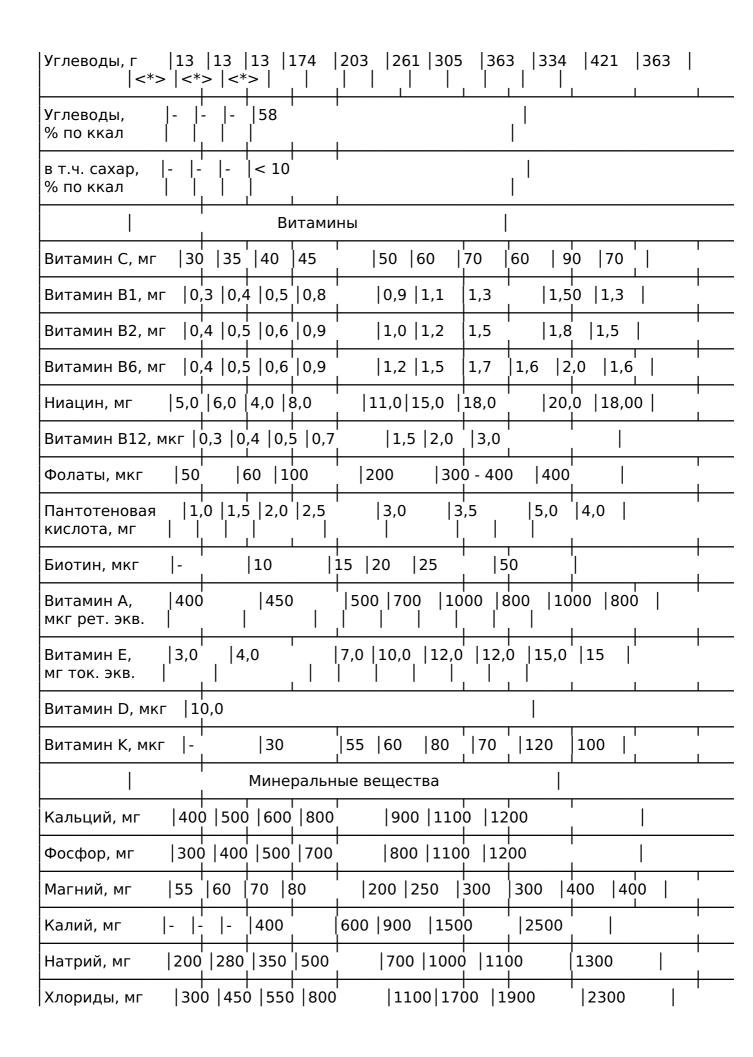
мг ток. экв.	
Витамин D, 10 мкг	15
Витамин К, 120 мкг	
	Минеральные вещества
Кальций, мг 1000	1200
Фосфор, мг 800	
Магний, мг 400	
Калий, мг 2500	
Натрий, мг 1300	
Хлориды, мг 2300	
Железо, мг 18	
Цинк, мг 12	
Йод, мкг 150	
Медь, мг 1,0	
Марганец, мг 2,0	
Селен, мкг 55	
Хром, мкг 50	
Молибден, мкг 70	
Фтор, мг 4,0	

Примечание. Для лиц, работающих в условиях Крайнего Севера, энерготраты увеличиваются на 15%, пропорционально возрастают потребности в белках, жирах и углеводах.

Таблица 5.3

ДОПОЛНИТЕЛЬНЫЕ ПОТРЕБНОСТИ В ЭНЕРГИИ И ПИЩЕВЫХ ВЕЩЕСТВАХ ДЛЯ ЖЕНЩИН В ПЕРИОД БЕРЕМЕННОСТИ И КОРМЛЕНИЯ РЕБЕНКА




Энерг	ия и макронут	-риенты	ı		
Энергия, ккал	350	500	450		T
Белок, г	30 4	1 40	30		1
в т.ч. животный, г	20	26	20		1
Жиры, г	12	15	15		1
Углеводы, г	30	40	30		
	Витамины				
Витамин С, мг	10	30	30		I
Витамин В1, мг	0,2	0,3	0,3		1
Витамин В2, мг	0,2	0,3	0,3		<u> </u>
Витамин В6, мг	0,3	0,5	0,5		I
Ниацин, мг	2	3	3		I
Витамин В12, мкг	0,5	0,5	0,5		1
Фолат, мкг	200	100	100		1
Витамин А, мкг рет.	экв. 100		100 4	00	1
Пантотеновая кисло	ота, мг 1,0	1	2,0	2,0	1
Витамин Е, мг ток. э	кв. 2	4	4		1
Витамин D, мкг	2,5	2,5	2,5		1
Мине	еральные вещ	ества			
Кальций, мг	300	400	400		T
Фосфор, мг	200	200	200		I
Магний, мг	50	50	50		I
Железо, мг	15	0	0	1	T I
Цинк, мг	3 3	 	3	1	1
Йод, мкг	70	140	140		1
Медь, мг	0,1	0,4	0,4		1
Марганец, мг	0,2	0,8	0,8	1	1

Селен, мкг	10	10	10	<u> </u>	l I	1

Таблица 5.4

НОРМЫ ФИЗИОЛОГИЧЕСКИХ ПОТРЕБНОСТЕЙ В ЭНЕРГИИ И ПИЩЕВЫХ ВЕЩЕСТВАХ ДЛЯ ДЕТЕЙ И ПОДРОСТКОВ РФ

					L		l		L		
Железо, мг	4,0	7,0	10,0	l L	12,	0	15,0	 18	3,0	1	
Цинк, мг	3,0	4,0	5,0	l	 8,0 10,0	12,0) 	I			
Йод, мг	0,06		0,07		0,10 0,12	0,13	0,1	5 I		ı	
Медь, мг	0,5	0,3	3 0,5	l	0,6 0,7	0,8		1,0			ı
Селен, мг	0,01	0,01	l 2 0 I	,015	 0,02	0,03	0,04 I	 0,0)5 		I L
Хром, мкг	- -	 - 	11		15 2	25	 35 				I L
Фтор, мг	1,0	1,0 1	,2 1,	1 4 I	 2,0 3,	0 4,0)0 	 4,0 			I

6. Рекомендуемые уровни потребления минорных и биологически активных веществ пищи с установленным физиологическим действием для взрослых

Таблица 6.1

Показатель Мужчины и же потребление/су	т енщины старше 18 лет, утки '
Витаминоподобные соединения:	
Инозит, мг 500	
L-Карнитин, мг 300	
Коэнзим Q10 (убихинон), мг 30	
Липоевая кислота, мг 30	
Метилметионин-сульфоний, мг 200	
Оротовая кислота, мг 300	
Парааминобензойная кислота, мг 100	
Холин, мг 500	
Микроэлементы:	

<*> Потребности для детей первого года жизни в энергии, жирах, углеводах даны в расчете на г/кг массы тела.

<**> Потребности для детей первого года жизни, находящихся на искусственном вскармливании.

Кобальт, мкг	10	1
Кремний, мг	30	
Другие биологически активн	ные вещества	
Индольные соединения:		
Индол-3-карболы, мг	50	
Флавоноиды, мг	250 (в том чі	 исле катехинов - 100)
Изофлавоны, изофлавонглик	козиды, мг 50	
Растительные стерины (фит	остерины), мг 3	 300
Глюкозамин сульфат, мг	700	

7. Рекомендуемые уровни потребления биологически активных веществ пищи с установленным физиологическим действием для детей

Таблица 7.1

Приложение

МОНИТОРИНГ ПИТАНИЯ. ИСПОЛЬЗОВАНИЕ "НОРМ ФИЗИОЛОГИЧЕСКИХ ПОТРЕБНОСТЕЙ В ЭНЕРГИИ И ПИЩЕВЫХ ВЕЩЕСТВАХ РАЗЛИЧНЫХ ГРУПП НАСЕЛЕНИЯ РФ" ДЛЯ ОЦЕНКИ ВЕРОЯТНОСТНОГО РИСКА НЕДОСТАТОЧНОГО ПОТРЕБЛЕНИЯ ПИЩЕВЫХ ВЕЩЕСТВ

При использовании Норм для оценки расчетов потребления пищевых веществ следует иметь в виду следующее:

- величины пищевых веществ, представленные в Нормах носят групповой характер, т.е. индивидуальная потребность (ИП) каждого человека будет ниже величины физиологической потребности;
- показатели ИП в популяции для пищевых веществ имеют нормальное распределение, т.е. потребности 95% популяции находятся в пределах двух стандартных отклонений от средней величины потребности (СП) (рис. 1 не приводится);
- СП означает, что одна половина популяции (50%) имеет ИП ниже СП, а другая выше СП. Фактическое потребление на уровне СП будет свидетельствовать 50% вероятностном риске недостаточного потребления (рис. 1 не приводится);
- около 2,5% популяции будут иметь ИП на два стандартных отклонения (около 30%) ниже СП. Фактическое потребление на этом уровне будет достаточным только для 2,5% популяции, а для подавляющей части популяции (почти 98%) такой уровень потребления будет явно недостаточным. Потребление на этом уровне будет свидетельствовать о 98% вероятностном риске недостаточного потребления (1).

В таблице 8.1 приведены критерии для оценки вероятностного риска недостаточного потребления некоторых пищевых веществ.

Таблица 8.1

КРИТЕРИИ ДЛЯ РАСЧЕТА ВЕРОЯТНОСТНОГО РИСКА НЕДОСТАТОЧНОГО ПОТРЕБЛЕНИЯ ПИЩЕВЫХ ВЕЩЕСТВ

Кальций, мг/день 700 Мужчины и женщины старше 18 лет	 - 1000 700,0 	 612,5 	 	 462,5		
Железо, мг/день Мужчины старше 18 лет Женщины 18 - 49 лет 1 Старше 50 лет -			11,4	 5,7 4, 9,7 8 4,7	٠.	ı